123423

Mejorar las aplicaciones informáticas de la llamada computación paralela –donde muchas instrucciones se ejecutan a la vez– para reducir su costo, aumentar su rendimiento y eficiencia energética, además de facilitar el mantenimiento del código fuente. Estas son algunas de las aportaciones que ha logrado el proyecto de investigación europeo REPARA, que concluye este mes de agosto bajo la coordinación de la Universidad Carlos III de Madrid

La computación heterogénea en paralelo combina varios elementos de procesamiento que comparten un único sistema de memoria. Normalmente se emplean procesadores de múltiples núcleos (como los ‘multicore’ de algunos smartphones u ordenadores personales) combinados con tarjetas gráficas y otros componentes para realizar procesamiento de grandes cantidades de datos.

En este ámbito se ha desarrollado el proyecto de investigación europeo REPARA (Reengineering and Enabling Performance and poweR of Applications), coordinado desde la Universidad Carlos III de Madrid (UC3M) para mejorar las aplicaciones informáticas de computación en paralelo, reducir su costo, aumentar su eficiencia energética y facilitar el mantenimiento del código fuente.

“Pretendemos ayudar a la transformación de código para su ejecución en plataformas paralelas y heterogéneas que combinan procesadores multicore con múltiples tarjetas gráficas y con hardware reconfigurable”, explica el coordinador del proyecto, José Daniel García, profesor del departamento de Informática de la UC3M.

reducir coste computación paralela

“Hemos obtenido mejoras muy significativas tanto en rendimiento como eficiencia energética comparables a las que se pueden conseguir con un proceso de desarrollo manual; la diferencia es que con un proceso de desarrollo manual necesitamos meses de ingeniería y con nuestro proceso semiautomático conseguimos hacer lo mismo en cuestión de días”.

Estos trabajos de cálculo encuentran aplicaciones en diversos sectores, como el sanitario (predicción del acoplamiento de proteínas), el transporte (monitorización de sistemas ferroviarios), la robótica (visión estereoscópica y navegación) o el industrial (análisis de defectos en la fabricación de piezas).

El proyecto REPARA busca poner a disposición de los usuarios los beneficios energéticos y de rendimiento de estos sistemas informáticos, sin el enorme esfuerzo de desarrollo que conllevan este tipo de arquitecturas complejas. La clave para conseguirlo radica, entre otras cosas, en la “refactorización” de código fuente, una técnica usada en ingeniería de software para mejorar la estructura interna de un programa sin alterar su comportamiento observable.

Algo así como cambiar la distribución de las tuberías y bombas de presión de un edificio para que salga el agua de manera más rápida, limpia y ecológica. Con ello, mejoran tres propiedades fundamentales: el rendimiento de las aplicaciones (ayudando a incrementar su velocidad de ejecución), la eficiencia energética (reduciendo su consumo energético) y la facilidad de mantenimiento y modificación del código fuente.

Los investigadores, que han publicado algunos de estos avances en la revista International Journal of Parallel Programming, han desarrollado y registrado tres productos tecnológicos que podrían explotar comercialmente con una empresa europea que se ha mostrado interesada. “Estos productos de software pueden ayudar a la hora de ofrecer servicios de ingeniería a terceros simplificando el proceso de desarrollo”, comenta el profesor José Daniel García.

Tres años de proyecto REPARA

El proyecto REPARA, que arrancó en septiembre de 2013 y acaba en agosto de 2016,  reúne a expertos en sistemas informáticos paralelos y heterogéneos del ámbito académico e industrial de cinco países europeos. Cuenta con presupuesto que supera los 3,6 millones de euros, de los cuales más de 2,6 millones provienen del Séptimo Programa Marco (7PM) para la Investigación y el Desarrollo Tecnológico, el principal instrumento de la Unión Europea para financiar la investigación.

En total, participan seis instituciones académicas: la Escuela Técnica Superior de Rapperswil (Suiza), la Universidad Carlos III de Madrid (España), la Universidad de Pisa (Italia), la Universidad de Szeged (Hungría), la Universidad Técnica de Darmstadt (Alemania) y la Universidad de Turín (Italia). Además, el proyecto cuenta con dos socios en el sector industrial: Ixion Industry & Aerospace en España y Evopro Innovation en Hungría. La UC3M es la institución coordinadora del proyecto REPARA y participa a través del grupo de investigación ARCOS, que aporta al proyecto su experiencia en computación de alto rendimiento y sistemas empotrados.

Fuente: SINC

×
CARACTERÍSTICAS
x
Altura 120 cm
Anchura 63 cm
Profundidad 178 cm
Peso 25 Kg
Motor Brushless (sin escobillas) trasero, 250W
Batería 36V, 13Ah, litio Samsung
Cargador AC 100V 230V, cargador inteligente
PAS Incluido
Controlador 36V 15Ah | Controlador inteligente, protección contra sobrecarga y baja tensión
Display LCD 5 niveles
Velocidad máxima 25 Km/h
Autonomía 80 Km con PAS
Tiempo de recarga 4-6 horas
Carga máxima 120 Kg
Cuadro Aleación de aluminio 6061
Llantas 26″, 480 mm blanco
Borde llantas 26×15 / 559 aleación de aluminio 3061 aluminio de doble pared CNC
Horquilla frontal SUNTOUR suspensión de aluminio 1/8 blanca
Manillar Aleación de aluminio
Freno delantero PROMAX, freno en V, aleación de aluminio negro
Freno trasero PROMAX, freno en V, aleación de aluminio negro
Cambio Shimano 7 speed
Piñón trasero Shimano 7 speed
Cadena 126H resistente al óxido
Sillín DOHOFO, negro
Tija Aleación de aluminio
Pedales Plegables de plástico con eje de acero
Luces Delantera y trasera conectadas a la batería principal
Maneta de freno Artek vigorous
Radios Acero inoxidable, 13G, 36 radios
Sensor de velocidad Incluido
Llave de seguridad Incluida
Reflectores En pedales
×
CARACTERÍSTICAS
x
Altura 112 cm
Anchura 76 cm
Profundidad 178 cm
Peso 25 Kg
Motor Brushless (sin escobillas) trasero, 250W
Batería 36V, 13Ah, litio Samsung
Cargador AC 100V 230V, cargador inteligente
PAS Incluido
Controlador 36V 15Ah | Controlador inteligente, protección contra sobrecarga y baja tensión
Display KM529-LCD
Velocidad máxima 25 Km/h
Autonomía 80 Km con PAS
Tiempo de recarga 4-6 horas
Carga máxima 120 Kg
Cuadro Aleación de aluminio 6061
Llantas CST PATROL 27,5″ 2.125″, neumático de montaña
Borde llantas Aluminio de doble pared CNC
Horquilla frontal Suspensión de aleación de aluminio, ZOOM
Manillar Aleación de aluminio
Freno delantero TEKTRO
Freno trasero TEKTRO
Cambio Shimano 7 speed
Piñón trasero Shimano 7 speed
Cadena Resistente al óxido
Sillín SR
Tija Aleación de aluminio
Pedales Plegables de plástico con eje de acero
Luces Delantera y trasera con pilas
Maneta de freno Artek vigorous
Radios Acero inoxidable, 13G, 36 radios
Sensor de velocidad Incluido
Llave de seguridad Incluida
Reflectores Naranjas en llantas
×
CARACTERÍSTICAS
x
Altura 120 cm
Anchura 63 cm
Profundidad 147 cm
Peso 19 Kg
Motor Brushless (sin escobillas) trasero, 250W
Batería 36V, 10Ah, litio
Cargador AC 100V 230V ENTRADA, 53-60 HZ, salida 36V 1,8 A
PAS Incluido
Controlador 90mm, sin escobillas, 14A conector impermeable
Display LCD 5 niveles
Velocidad máxima 25 Km/h
Autonomía 55 Km
Tiempo de recarga 4-6 horas
Carga máxima 120 Kg
Cuadro Aleación de aluminio 6061
Llantas Dobles de 20″
Horquilla frontal 20″, aleación sin suspensión, 25,4×175/40 mm negra
Manillar Diametro 25,4 mm
Freno delantero PROMAX, freno en V, aleación de aluminio negro
Freno trasero Freno de disco PROMAX
Cambio Shimano Tourney 6
Piñón trasero Shimano Tourney 6
Cadena KMC resistente al óxido
Sillín DOHOFO, negro
Tija Aleación de aluminio, 33 mm, 500 mm, sin suspensión
Pedales Plegables de plástico con eje de acero
Luces Delantera y trasera con pilas
Maneta de freno Artek vigorous
Radios Acero inoxidable, 13G, 36 radios
Sensor de velocidad Incluido
Llave de seguridad Incluida
Reflectores En pedales
×
WhatsApp chat